diff --git a/gradio_app.py b/gradio_app.py index 52b4fc4..e89330d 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -9,27 +9,21 @@ import os from datetime import datetime import gradio as gr -# Define the function to generate audio based on a prompt -def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half): - device = "cuda" if torch.cuda.is_available() else "cpu" - - # Download model +# Define a function to set up the model and device +def setup_model(model_half): model, model_config = get_pretrained_model("audo/stable-audio-open-1.0") - sample_rate = model_config["sample_rate"] - sample_size = model_config["sample_size"] - + device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) - # Print model data type before conversion - print("Model data type before conversion:", next(model.parameters()).dtype) - # Convert model to float16 if model_half is True if model_half: model = model.to(torch.float16) + print("Model data type:", next(model.parameters()).dtype) - # Print model data type after conversion - print("Model data type after conversion:", next(model.parameters()).dtype) + return model, model_config, device +# Define the function to generate audio based on a prompt +def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device): # Set up text and timing conditioning conditioning = [{ "prompt": prompt, @@ -43,7 +37,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti steps=steps, cfg_scale=cfg_scale, conditioning=conditioning, - sample_size=sample_size, + sample_size=model_config["sample_size"], sigma_min=sigma_min, sigma_max=sigma_max, sampler_type=sampler_type, @@ -51,9 +45,6 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti seed=seed ) - # Print output data type - print("Output data type:", output.dtype) - # Rearrange audio batch to a single sequence output = rearrange(output, "b d n -> d (b n)") @@ -64,7 +55,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti else: output = output.to(torch.float32).to(torch.int16).cpu() - torchaudio.save("temp_output.wav", output, sample_rate) + torchaudio.save("temp_output.wav", output, model_config["sample_rate"]) # Convert to MP3 format using pydub audio = AudioSegment.from_wav("temp_output.wav") @@ -76,7 +67,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti os.makedirs(save_path, exist_ok=True) # Generate a filename based on the prompt - filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores + filename = re.sub(r'\W+', '_', prompt) + ".mp3" full_path = os.path.join(save_path, filename) # Ensure the filename is unique by appending a number if the file already exists @@ -105,43 +96,56 @@ def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max print("Seed:", seed) print("Model Half Precision:", model_half) - filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half) + # Set up the model and device + model, model_config, device = setup_model(model_half) + + filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device) return gr.Audio(filename), f"Generated: {filename}" except Exception as e: return str(e) # Create Gradio interface -prompt_textbox = gr.Textbox(lines=5, label="Prompt") -sampler_dropdown = gr.Dropdown( - label="Sampler Type", - choices=[ - "dpmpp-3m-sde", - "dpmpp-2m-sde", - "k-heun", - "k-lms", - "k-dpmpp-2s-ancestral", - "k-dpm-2", - "k-dpm-fast" - ], - value="dpmpp-3m-sde" -) -steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100) -cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7) -sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3) -sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500) -generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47) -seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456) -model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False) +with gr.Blocks() as demo: + gr.Markdown("