import torch import torchaudio from einops import rearrange from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond from pydub import AudioSegment import re import os from datetime import datetime import gradio as gr # Define a function to toggle the visibility of the seed slider def toggle_seed_slider(x): seed_slider.visible = not x # Define a function to set up the model and device def setup_model(model_half): model, model_config = get_pretrained_model("audo/stable-audio-open-1.0") device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) # Convert model to float16 if model_half is True if model_half: model = model.to(torch.float16) print("Model data type:", next(model.parameters()).dtype) return model, model_config, device # Define the function to generate audio based on a prompt def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device): # Set up text and timing conditioning conditioning = [{ "prompt": prompt, "seconds_start": 0, "seconds_total": generation_time }] # Generate stereo audio output = generate_diffusion_cond( model, steps=steps, cfg_scale=cfg_scale, conditioning=conditioning, sample_size=model_config["sample_size"], sigma_min=sigma_min, sigma_max=sigma_max, sampler_type=sampler_type, device=device, seed=seed ) # Rearrange audio batch to a single sequence output = rearrange(output, "b d n -> d (b n)") # Peak normalize, clip, and convert to int16 directly if model_half is used output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767) if model_half: output = output.to(torch.int16).cpu() else: output = output.to(torch.float32).to(torch.int16).cpu() torchaudio.save("temp_output.wav", output, model_config["sample_rate"]) # Convert to MP3 format using pydub audio = AudioSegment.from_wav("temp_output.wav") # Create Output folder and dated subfolder if they do not exist output_folder = "Output" date_folder = datetime.now().strftime("%Y-%m-%d") save_path = os.path.join(output_folder, date_folder) os.makedirs(save_path, exist_ok=True) # Set a maximum filename length (e.g., 50 characters) max_length = 50 if len(prompt) > max_length: prompt = prompt[:max_length] + "_truncated" # Sanitize the prompt to create a safe filename filename = re.sub(r'\W+', '_', prompt) + ".mp3" full_path = os.path.join(save_path, filename) # Ensure the filename is unique by appending a number if the file already exists base_filename = filename counter = 1 while os.path.exists(full_path): filename = f"{base_filename[:-4]}_{counter}.mp3" full_path = os.path.join(save_path, filename) counter += 1 # Export the audio to MP3 format audio.export(full_path, format="mp3") return full_path def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, random_seed, seed, model_half): try: print("Generating audio with parameters:") print("Prompt:", prompt) print("Sampler Type:", sampler_type) print("Steps:", steps) print("CFG Scale:", cfg_scale) print("Sigma Min:", sigma_min) print("Sigma Max:", sigma_max) print("Generation Time:", generation_time) print("Random Seed:", "Random" if random_seed else "Fixed") print("Seed:", seed) print("Model Half Precision:", model_half) # Set up the model and device model, model_config, device = setup_model(model_half) if random_seed: seed = torch.randint(0, 1000000, (1,)).item() filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device) return gr.Audio(filename), f"Generated: {filename}" except Exception as e: return str(e) # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("