Files
StableAudioWebUI/gradio_app.py
drbaph 944e6ffce3 Update gradio_app.py
Update 0.4 Check README.md
2024-06-10 18:02:56 +01:00

159 lines
6.0 KiB
Python

import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from pydub import AudioSegment
import re
import os
from datetime import datetime
import gradio as gr
# Define a function to set up the model and device
def setup_model(model_half):
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Convert model to float16 if model_half is True
if model_half:
model = model.to(torch.float16)
print("Model data type:", next(model.parameters()).dtype)
return model, model_config, device
# Define the function to generate audio based on a prompt
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device):
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": generation_time
}]
# Generate stereo audio
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=model_config["sample_size"],
sigma_min=sigma_min,
sigma_max=sigma_max,
sampler_type=sampler_type,
device=device,
seed=seed
)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, and convert to int16 directly if model_half is used
output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767)
if model_half:
output = output.to(torch.int16).cpu()
else:
output = output.to(torch.float32).to(torch.int16).cpu()
torchaudio.save("temp_output.wav", output, model_config["sample_rate"])
# Convert to MP3 format using pydub
audio = AudioSegment.from_wav("temp_output.wav")
# Create Output folder and dated subfolder if they do not exist
output_folder = "Output"
date_folder = datetime.now().strftime("%Y-%m-%d")
save_path = os.path.join(output_folder, date_folder)
os.makedirs(save_path, exist_ok=True)
# Set a maximum filename length (e.g., 50 characters)
max_length = 50
if len(prompt) > max_length:
prompt = prompt[:max_length] + "_truncated"
# Sanitize the prompt to create a safe filename
filename = re.sub(r'\W+', '_', prompt) + ".mp3"
full_path = os.path.join(save_path, filename)
# Ensure the filename is unique by appending a number if the file already exists
base_filename = filename
counter = 1
while os.path.exists(full_path):
filename = f"{base_filename[:-4]}_{counter}.mp3"
full_path = os.path.join(save_path, filename)
counter += 1
# Export the audio to MP3 format
audio.export(full_path, format="mp3")
return full_path
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half):
try:
print("Generating audio with parameters:")
print("Prompt:", prompt)
print("Sampler Type:", sampler_type)
print("Steps:", steps)
print("CFG Scale:", cfg_scale)
print("Sigma Min:", sigma_min)
print("Sigma Max:", sigma_max)
print("Generation Time:", generation_time)
print("Seed:", seed)
print("Model Half Precision:", model_half)
# Set up the model and device
model, model_config, device = setup_model(model_half)
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device)
return gr.Audio(filename), f"Generated: {filename}"
except Exception as e:
return str(e)
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center; font-size: 300%;'>💀🔊 StableAudioWebUI 💀🔊</h1>")
# Main input components
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
sampler_dropdown = gr.Dropdown(
label="Sampler Type",
choices=[
"dpmpp-3m-sde",
"dpmpp-2m-sde",
"k-heun",
"k-lms",
"k-dpmpp-2s-ancestral",
"k-dpm-2",
"k-dpm-fast"
],
value="dpmpp-3m-sde"
)
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
# Advanced parameters accordion
with gr.Accordion("Advanced Parameters", open=False):
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
# Low VRAM checkbox and submit button
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
submit_button = gr.Button("Generate")
# Define the output components
audio_output = gr.Audio()
output_textbox = gr.Textbox(label="Output")
# Link the button and the function
submit_button.click(audio_generator,
inputs=[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
outputs=[audio_output, output_textbox])
# GitHub link at the bottom
gr.Markdown("<p style='text-align: center;'><a href='https://github.com/Saganaki22/StableAudioWebUI'>Github Repository</a></p>")
# Launch the Gradio demo
demo.launch()