159 lines
6.0 KiB
Python
159 lines
6.0 KiB
Python
import torch
|
|
import torchaudio
|
|
from einops import rearrange
|
|
from stable_audio_tools import get_pretrained_model
|
|
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
|
from pydub import AudioSegment
|
|
import re
|
|
import os
|
|
from datetime import datetime
|
|
import gradio as gr
|
|
|
|
# Define a function to set up the model and device
|
|
def setup_model(model_half):
|
|
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
model = model.to(device)
|
|
|
|
# Convert model to float16 if model_half is True
|
|
if model_half:
|
|
model = model.to(torch.float16)
|
|
print("Model data type:", next(model.parameters()).dtype)
|
|
|
|
return model, model_config, device
|
|
|
|
# Define the function to generate audio based on a prompt
|
|
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device):
|
|
# Set up text and timing conditioning
|
|
conditioning = [{
|
|
"prompt": prompt,
|
|
"seconds_start": 0,
|
|
"seconds_total": generation_time
|
|
}]
|
|
|
|
# Generate stereo audio
|
|
output = generate_diffusion_cond(
|
|
model,
|
|
steps=steps,
|
|
cfg_scale=cfg_scale,
|
|
conditioning=conditioning,
|
|
sample_size=model_config["sample_size"],
|
|
sigma_min=sigma_min,
|
|
sigma_max=sigma_max,
|
|
sampler_type=sampler_type,
|
|
device=device,
|
|
seed=seed
|
|
)
|
|
|
|
# Rearrange audio batch to a single sequence
|
|
output = rearrange(output, "b d n -> d (b n)")
|
|
|
|
# Peak normalize, clip, and convert to int16 directly if model_half is used
|
|
output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767)
|
|
if model_half:
|
|
output = output.to(torch.int16).cpu()
|
|
else:
|
|
output = output.to(torch.float32).to(torch.int16).cpu()
|
|
|
|
torchaudio.save("temp_output.wav", output, model_config["sample_rate"])
|
|
|
|
# Convert to MP3 format using pydub
|
|
audio = AudioSegment.from_wav("temp_output.wav")
|
|
|
|
# Create Output folder and dated subfolder if they do not exist
|
|
output_folder = "Output"
|
|
date_folder = datetime.now().strftime("%Y-%m-%d")
|
|
save_path = os.path.join(output_folder, date_folder)
|
|
os.makedirs(save_path, exist_ok=True)
|
|
|
|
# Set a maximum filename length (e.g., 50 characters)
|
|
max_length = 50
|
|
if len(prompt) > max_length:
|
|
prompt = prompt[:max_length] + "_truncated"
|
|
|
|
# Sanitize the prompt to create a safe filename
|
|
filename = re.sub(r'\W+', '_', prompt) + ".mp3"
|
|
full_path = os.path.join(save_path, filename)
|
|
|
|
# Ensure the filename is unique by appending a number if the file already exists
|
|
base_filename = filename
|
|
counter = 1
|
|
while os.path.exists(full_path):
|
|
filename = f"{base_filename[:-4]}_{counter}.mp3"
|
|
full_path = os.path.join(save_path, filename)
|
|
counter += 1
|
|
|
|
# Export the audio to MP3 format
|
|
audio.export(full_path, format="mp3")
|
|
|
|
return full_path
|
|
|
|
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half):
|
|
try:
|
|
print("Generating audio with parameters:")
|
|
print("Prompt:", prompt)
|
|
print("Sampler Type:", sampler_type)
|
|
print("Steps:", steps)
|
|
print("CFG Scale:", cfg_scale)
|
|
print("Sigma Min:", sigma_min)
|
|
print("Sigma Max:", sigma_max)
|
|
print("Generation Time:", generation_time)
|
|
print("Seed:", seed)
|
|
print("Model Half Precision:", model_half)
|
|
|
|
# Set up the model and device
|
|
model, model_config, device = setup_model(model_half)
|
|
|
|
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device)
|
|
return gr.Audio(filename), f"Generated: {filename}"
|
|
except Exception as e:
|
|
return str(e)
|
|
|
|
# Create Gradio interface
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("<h1 style='text-align: center; font-size: 300%;'>💀🔊 StableAudioWebUI 💀🔊</h1>")
|
|
|
|
# Main input components
|
|
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
|
|
sampler_dropdown = gr.Dropdown(
|
|
label="Sampler Type",
|
|
choices=[
|
|
"dpmpp-3m-sde",
|
|
"dpmpp-2m-sde",
|
|
"k-heun",
|
|
"k-lms",
|
|
"k-dpmpp-2s-ancestral",
|
|
"k-dpm-2",
|
|
"k-dpm-fast"
|
|
],
|
|
value="dpmpp-3m-sde"
|
|
)
|
|
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
|
|
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
|
|
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
|
|
|
|
# Advanced parameters accordion
|
|
with gr.Accordion("Advanced Parameters", open=False):
|
|
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
|
|
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
|
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
|
|
|
|
# Low VRAM checkbox and submit button
|
|
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
|
|
submit_button = gr.Button("Generate")
|
|
|
|
# Define the output components
|
|
audio_output = gr.Audio()
|
|
output_textbox = gr.Textbox(label="Output")
|
|
|
|
# Link the button and the function
|
|
submit_button.click(audio_generator,
|
|
inputs=[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
|
|
outputs=[audio_output, output_textbox])
|
|
|
|
# GitHub link at the bottom
|
|
gr.Markdown("<p style='text-align: center;'><a href='https://github.com/Saganaki22/StableAudioWebUI'>Github Repository</a></p>")
|
|
|
|
# Launch the Gradio demo
|
|
demo.launch()
|