Add files via upload
This commit is contained in:
117
gradio_app.py
Normal file
117
gradio_app.py
Normal file
@@ -0,0 +1,117 @@
|
||||
import torch
|
||||
import torchaudio
|
||||
from einops import rearrange
|
||||
from stable_audio_tools import get_pretrained_model
|
||||
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
||||
from pydub import AudioSegment
|
||||
import re
|
||||
import os
|
||||
from datetime import datetime
|
||||
import gradio as gr
|
||||
|
||||
# Define the function to generate audio based on a prompt
|
||||
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed):
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# Download model
|
||||
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
|
||||
sample_rate = model_config["sample_rate"]
|
||||
sample_size = model_config["sample_size"]
|
||||
|
||||
model = model.to(device)
|
||||
|
||||
# Set up text and timing conditioning
|
||||
conditioning = [{
|
||||
"prompt": prompt,
|
||||
"seconds_start": 0,
|
||||
"seconds_total": generation_time
|
||||
}]
|
||||
|
||||
# Generate stereo audio
|
||||
output = generate_diffusion_cond(
|
||||
model,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
conditioning=conditioning,
|
||||
sample_size=sample_size,
|
||||
sigma_min=sigma_min,
|
||||
sigma_max=sigma_max,
|
||||
sampler_type="dpmpp-3m-sde",
|
||||
device=device,
|
||||
seed=seed
|
||||
)
|
||||
|
||||
# Rearrange audio batch to a single sequence
|
||||
output = rearrange(output, "b d n -> d (b n)")
|
||||
|
||||
# Peak normalize, clip, convert to int16, and save to temporary file
|
||||
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
||||
torchaudio.save("temp_output.wav", output, sample_rate)
|
||||
|
||||
# Convert to MP3 format using pydub
|
||||
audio = AudioSegment.from_wav("temp_output.wav")
|
||||
|
||||
# Create Output folder and dated subfolder if they do not exist
|
||||
output_folder = "Output"
|
||||
date_folder = datetime.now().strftime("%Y-%m-%d")
|
||||
save_path = os.path.join(output_folder, date_folder)
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
|
||||
# Generate a filename based on the prompt
|
||||
filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores
|
||||
full_path = os.path.join(save_path, filename)
|
||||
|
||||
# Ensure the filename is unique by appending a number if the file already exists
|
||||
base_filename = filename
|
||||
counter = 1
|
||||
while os.path.exists(full_path):
|
||||
filename = f"{base_filename[:-4]}_{counter}.mp3"
|
||||
full_path = os.path.join(save_path, filename)
|
||||
counter += 1
|
||||
|
||||
# Export the audio to MP3 format
|
||||
audio.export(full_path, format="mp3")
|
||||
|
||||
return full_path
|
||||
|
||||
def audio_generator(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed):
|
||||
try:
|
||||
print("Generating audio with parameters:")
|
||||
print("Prompt:", prompt)
|
||||
print("Steps:", steps)
|
||||
print("CFG Scale:", cfg_scale)
|
||||
print("Sigma Min:", sigma_min)
|
||||
print("Sigma Max:", sigma_max)
|
||||
print("Generation Time:", generation_time)
|
||||
print("Seed:", seed)
|
||||
|
||||
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed)
|
||||
return gr.Audio(filename), f"Generated: {filename}"
|
||||
except Exception as e:
|
||||
return str(e)
|
||||
|
||||
# Create Gradio interface
|
||||
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
|
||||
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1)
|
||||
steps_slider.value = 100 # Set the default value here
|
||||
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=1)
|
||||
cfg_scale_slider.value = 7 # Set the default value here
|
||||
sigma_min_number = gr.Number(label="Sigma Min")
|
||||
sigma_min_number.default = 0.3 # Set the default value here
|
||||
sigma_max_number = gr.Number(label="Sigma Max")
|
||||
sigma_max_number.default = 500 # Set the default value here
|
||||
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1)
|
||||
generation_time_slider.value = 47 # Set the default value here
|
||||
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1)
|
||||
seed_slider.value = 77212 # Set the default value here
|
||||
|
||||
output_textbox = gr.Textbox(label="Output")
|
||||
|
||||
title = "Saganaki22 / StableAudioWebUI"
|
||||
description = "Generate audio based on a prompt. <br> (Sigma_min: 0.3, Sigma_max: 500)"
|
||||
|
||||
gr.Interface(audio_generator,
|
||||
[prompt_textbox, steps_slider, cfg_scale_slider, sigma_min_number, sigma_max_number, generation_time_slider, seed_slider],
|
||||
[gr.Audio(), output_textbox],
|
||||
title=title,
|
||||
description=description).launch()
|
5
requirements.txt
Normal file
5
requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
gradio
|
||||
einops
|
||||
stable_audio_tools
|
||||
pydub
|
||||
|
4
requirements1.txt
Normal file
4
requirements1.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
torch
|
||||
torchvision
|
||||
torchaudio
|
||||
|
Reference in New Issue
Block a user