Update gradio_app.py
🚀 Update 0.3
This commit is contained in:
106
gradio_app.py
106
gradio_app.py
@@ -9,27 +9,21 @@ import os
|
||||
from datetime import datetime
|
||||
import gradio as gr
|
||||
|
||||
# Define the function to generate audio based on a prompt
|
||||
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half):
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# Download model
|
||||
# Define a function to set up the model and device
|
||||
def setup_model(model_half):
|
||||
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
|
||||
sample_rate = model_config["sample_rate"]
|
||||
sample_size = model_config["sample_size"]
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model = model.to(device)
|
||||
|
||||
# Print model data type before conversion
|
||||
print("Model data type before conversion:", next(model.parameters()).dtype)
|
||||
|
||||
# Convert model to float16 if model_half is True
|
||||
if model_half:
|
||||
model = model.to(torch.float16)
|
||||
print("Model data type:", next(model.parameters()).dtype)
|
||||
|
||||
# Print model data type after conversion
|
||||
print("Model data type after conversion:", next(model.parameters()).dtype)
|
||||
return model, model_config, device
|
||||
|
||||
# Define the function to generate audio based on a prompt
|
||||
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device):
|
||||
# Set up text and timing conditioning
|
||||
conditioning = [{
|
||||
"prompt": prompt,
|
||||
@@ -43,7 +37,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
conditioning=conditioning,
|
||||
sample_size=sample_size,
|
||||
sample_size=model_config["sample_size"],
|
||||
sigma_min=sigma_min,
|
||||
sigma_max=sigma_max,
|
||||
sampler_type=sampler_type,
|
||||
@@ -51,9 +45,6 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
||||
seed=seed
|
||||
)
|
||||
|
||||
# Print output data type
|
||||
print("Output data type:", output.dtype)
|
||||
|
||||
# Rearrange audio batch to a single sequence
|
||||
output = rearrange(output, "b d n -> d (b n)")
|
||||
|
||||
@@ -64,7 +55,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
||||
else:
|
||||
output = output.to(torch.float32).to(torch.int16).cpu()
|
||||
|
||||
torchaudio.save("temp_output.wav", output, sample_rate)
|
||||
torchaudio.save("temp_output.wav", output, model_config["sample_rate"])
|
||||
|
||||
# Convert to MP3 format using pydub
|
||||
audio = AudioSegment.from_wav("temp_output.wav")
|
||||
@@ -76,7 +67,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
|
||||
# Generate a filename based on the prompt
|
||||
filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores
|
||||
filename = re.sub(r'\W+', '_', prompt) + ".mp3"
|
||||
full_path = os.path.join(save_path, filename)
|
||||
|
||||
# Ensure the filename is unique by appending a number if the file already exists
|
||||
@@ -105,43 +96,56 @@ def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max
|
||||
print("Seed:", seed)
|
||||
print("Model Half Precision:", model_half)
|
||||
|
||||
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half)
|
||||
# Set up the model and device
|
||||
model, model_config, device = setup_model(model_half)
|
||||
|
||||
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device)
|
||||
return gr.Audio(filename), f"Generated: {filename}"
|
||||
except Exception as e:
|
||||
return str(e)
|
||||
|
||||
# Create Gradio interface
|
||||
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
|
||||
sampler_dropdown = gr.Dropdown(
|
||||
label="Sampler Type",
|
||||
choices=[
|
||||
"dpmpp-3m-sde",
|
||||
"dpmpp-2m-sde",
|
||||
"k-heun",
|
||||
"k-lms",
|
||||
"k-dpmpp-2s-ancestral",
|
||||
"k-dpm-2",
|
||||
"k-dpm-fast"
|
||||
],
|
||||
value="dpmpp-3m-sde"
|
||||
)
|
||||
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
|
||||
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
|
||||
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
||||
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
|
||||
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
|
||||
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
|
||||
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown("<h1 style='text-align: center; font-size: 300%;'>💀🔊 StableAudioWebUI 💀🔊</h1>")
|
||||
gr.Markdown("<p style='text-align: center;'><a href='https://github.com/Saganaki22/StableAudioWebUI'>Github Repository</a></p>")
|
||||
|
||||
output_textbox = gr.Textbox(label="Output")
|
||||
# Main input components
|
||||
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
|
||||
sampler_dropdown = gr.Dropdown(
|
||||
label="Sampler Type",
|
||||
choices=[
|
||||
"dpmpp-3m-sde",
|
||||
"dpmpp-2m-sde",
|
||||
"k-heun",
|
||||
"k-lms",
|
||||
"k-dpmpp-2s-ancestral",
|
||||
"k-dpm-2",
|
||||
"k-dpm-fast"
|
||||
],
|
||||
value="dpmpp-3m-sde"
|
||||
)
|
||||
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
|
||||
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
|
||||
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
|
||||
|
||||
title = "💀🔊 StableAudioWebUI 💀🔊"
|
||||
description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebUI)"
|
||||
# Advanced parameters accordion
|
||||
with gr.Accordion("Advanced Parameters", open=False):
|
||||
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
|
||||
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
||||
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
|
||||
|
||||
gr.Interface(
|
||||
audio_generator,
|
||||
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
|
||||
[gr.Audio(), output_textbox],
|
||||
title=title,
|
||||
description=description
|
||||
).launch()
|
||||
# Low VRAM checkbox and submit button
|
||||
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
|
||||
submit_button = gr.Button("Generate")
|
||||
|
||||
# Define the output components
|
||||
audio_output = gr.Audio()
|
||||
output_textbox = gr.Textbox(label="Output")
|
||||
|
||||
# Link the button and the function
|
||||
submit_button.click(audio_generator,
|
||||
inputs=[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
|
||||
outputs=[audio_output, output_textbox])
|
||||
|
||||
# Launch the Gradio demo
|
||||
demo.launch()
|
||||
|
Reference in New Issue
Block a user