Update gradio_app.py

🚀 Update 0.3
This commit is contained in:
drbaph
2024-06-08 00:13:51 +01:00
committed by GitHub
parent a63fe3340e
commit 6db705caad

View File

@@ -9,27 +9,21 @@ import os
from datetime import datetime from datetime import datetime
import gradio as gr import gradio as gr
# Define the function to generate audio based on a prompt # Define a function to set up the model and device
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half): def setup_model(model_half):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download model
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0") model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
sample_rate = model_config["sample_rate"] device = "cuda" if torch.cuda.is_available() else "cpu"
sample_size = model_config["sample_size"]
model = model.to(device) model = model.to(device)
# Print model data type before conversion
print("Model data type before conversion:", next(model.parameters()).dtype)
# Convert model to float16 if model_half is True # Convert model to float16 if model_half is True
if model_half: if model_half:
model = model.to(torch.float16) model = model.to(torch.float16)
print("Model data type:", next(model.parameters()).dtype)
# Print model data type after conversion return model, model_config, device
print("Model data type after conversion:", next(model.parameters()).dtype)
# Define the function to generate audio based on a prompt
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device):
# Set up text and timing conditioning # Set up text and timing conditioning
conditioning = [{ conditioning = [{
"prompt": prompt, "prompt": prompt,
@@ -43,7 +37,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
steps=steps, steps=steps,
cfg_scale=cfg_scale, cfg_scale=cfg_scale,
conditioning=conditioning, conditioning=conditioning,
sample_size=sample_size, sample_size=model_config["sample_size"],
sigma_min=sigma_min, sigma_min=sigma_min,
sigma_max=sigma_max, sigma_max=sigma_max,
sampler_type=sampler_type, sampler_type=sampler_type,
@@ -51,9 +45,6 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
seed=seed seed=seed
) )
# Print output data type
print("Output data type:", output.dtype)
# Rearrange audio batch to a single sequence # Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)") output = rearrange(output, "b d n -> d (b n)")
@@ -64,7 +55,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
else: else:
output = output.to(torch.float32).to(torch.int16).cpu() output = output.to(torch.float32).to(torch.int16).cpu()
torchaudio.save("temp_output.wav", output, sample_rate) torchaudio.save("temp_output.wav", output, model_config["sample_rate"])
# Convert to MP3 format using pydub # Convert to MP3 format using pydub
audio = AudioSegment.from_wav("temp_output.wav") audio = AudioSegment.from_wav("temp_output.wav")
@@ -76,7 +67,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
os.makedirs(save_path, exist_ok=True) os.makedirs(save_path, exist_ok=True)
# Generate a filename based on the prompt # Generate a filename based on the prompt
filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores filename = re.sub(r'\W+', '_', prompt) + ".mp3"
full_path = os.path.join(save_path, filename) full_path = os.path.join(save_path, filename)
# Ensure the filename is unique by appending a number if the file already exists # Ensure the filename is unique by appending a number if the file already exists
@@ -105,14 +96,22 @@ def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max
print("Seed:", seed) print("Seed:", seed)
print("Model Half Precision:", model_half) print("Model Half Precision:", model_half)
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half) # Set up the model and device
model, model_config, device = setup_model(model_half)
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half, model, model_config, device)
return gr.Audio(filename), f"Generated: {filename}" return gr.Audio(filename), f"Generated: {filename}"
except Exception as e: except Exception as e:
return str(e) return str(e)
# Create Gradio interface # Create Gradio interface
prompt_textbox = gr.Textbox(lines=5, label="Prompt") with gr.Blocks() as demo:
sampler_dropdown = gr.Dropdown( gr.Markdown("<h1 style='text-align: center; font-size: 300%;'>💀🔊 StableAudioWebUI 💀🔊</h1>")
gr.Markdown("<p style='text-align: center;'><a href='https://github.com/Saganaki22/StableAudioWebUI'>Github Repository</a></p>")
# Main input components
prompt_textbox = gr.Textbox(lines=5, label="Prompt")
sampler_dropdown = gr.Dropdown(
label="Sampler Type", label="Sampler Type",
choices=[ choices=[
"dpmpp-3m-sde", "dpmpp-3m-sde",
@@ -124,24 +123,29 @@ sampler_dropdown = gr.Dropdown(
"k-dpm-fast" "k-dpm-fast"
], ],
value="dpmpp-3m-sde" value="dpmpp-3m-sde"
) )
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100) steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7) generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3) seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
output_textbox = gr.Textbox(label="Output") # Advanced parameters accordion
with gr.Accordion("Advanced Parameters", open=False):
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
title = "💀🔊 StableAudioWebUI 💀🔊" # Low VRAM checkbox and submit button
description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebUI)" model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
submit_button = gr.Button("Generate")
gr.Interface( # Define the output components
audio_generator, audio_output = gr.Audio()
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox], output_textbox = gr.Textbox(label="Output")
[gr.Audio(), output_textbox],
title=title, # Link the button and the function
description=description submit_button.click(audio_generator,
).launch() inputs=[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
outputs=[audio_output, output_textbox])
# Launch the Gradio demo
demo.launch()